Shortlist B: a Bayesian model of continuous speech recognition.
نویسندگان
چکیده
A Bayesian model of continuous speech recognition is presented. It is based on Shortlist (D. Norris, 1994; D. Norris, J. M. McQueen, A. Cutler, & S. Butterfield, 1997) and shares many of its key assumptions: parallel competitive evaluation of multiple lexical hypotheses, phonologically abstract prelexical and lexical representations, a feedforward architecture with no online feedback, and a lexical segmentation algorithm based on the viability of chunks of the input as possible words. Shortlist B is radically different from its predecessor in two respects. First, whereas Shortlist was a connectionist model based on interactive-activation principles, Shortlist B is based on Bayesian principles. Second, the input to Shortlist B is no longer a sequence of discrete phonemes; it is a sequence of multiple phoneme probabilities over 3 time slices per segment, derived from the performance of listeners in a large-scale gating study. Simulations are presented showing that the model can account for key findings: data on the segmentation of continuous speech, word frequency effects, the effects of mispronunciations on word recognition, and evidence on lexical involvement in phonemic decision making. The success of Shortlist B suggests that listeners make optimal Bayesian decisions during spoken-word recognition.
منابع مشابه
Improved Bayesian Training for Context-Dependent Modeling in Continuous Persian Speech Recognition
Context-dependent modeling is a widely used technique for better phone modeling in continuous speech recognition. While different types of context-dependent models have been used, triphones have been known as the most effective ones. In this paper, a Maximum a Posteriori (MAP) estimation approach has been used to estimate the parameters of the untied triphone model set used in data-driven clust...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملPronunciation Variation Modelling in a Model of Human Word Recognition
Due to pronunciation variation, many insertions and deletions of phones occur in spontaneous speech. The psycholinguistic model of human speech recognition Shortlist is not well able to deal with phone insertions and deletions and is therefore not well suited for dealing with real-life input. The research presented in this paper explains how Shortlist can benefit from pronunciation variation mo...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملShortlist: a connectionist model of continuous speech recognition
Previous work has shown how a back-propagation network with recurrent connections can successfully model many aspects of human spoken word recognition (Norris, 1988, 1990, 1992, 1993). However, such networks are unable to revise their decisions in the light of subsequent context. TRACE (McClelland & Elman, 1986), on the other hand, manages to deal appropriately with following context, but only ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Psychological review
دوره 115 2 شماره
صفحات -
تاریخ انتشار 2008